No: 220711-3

Test Report

Subtropical Architecture Institute South China University of Technology

Test Specimen:	12mm Polyester Fiber Panel
Test project:	Sound Absorption Coefficient
Organization: Fos	han TianGe Acoustic and Decor Material Co., Ltd.

Tested by: LIU Peijie

Inspected by: IHAO he she

Charged by: Sun

Date: 2022-7-8

I. Condition

- 1) Volume of reverberation room:200m³;
- 2) Area of test Specimen:10.8m²;
- 3) Sample size:1200mm×600mm×12mm;
- 4) Temperature:27°C, Relative humidity:72%;

II. Method of Measurement

The measurements were carried out according to "Acoustics Measurement of sound absorption in a reverberation room (GB/T20247-2006/ISO354:2003)" in the acoustic laboratory of South China University of Technology. The equivalent sound absorption area of the test specimen A_T shall be calculated by the following formula

$$A_T = 55.3V \left(\frac{1}{c_2 T_2} - \frac{1}{c_1 T_1} \right) - 4V(m_2 - m_1)$$
 (1)

Where

V is the volume of the empty reverberation room, m^3 ;

 c_I is the propagation speed of sound in air during measurement of T_1 , m/s;

c2 is the propagation speed of sound in air during measurement of T2, m/s;

T₁ is the reverberation time of empty reverberation room, s;

T2 is the reverberation time of reverberation room after the test specimen has been introduced, s;

m₁ is the power attenuation coefficient during measurement of T₁, m⁻¹;

 m_2 is the power attenuation coefficient during measurement of T_2 , m^{-1} .

The sound absorption coefficient α_s shall be calculated by the following equation

$$\alpha_s = \frac{A_T}{S}$$
 2)

Where

S is the area of the test specimen, m²;

 A_T is the equivalent sound absorption area of the test specimen.

When the test specimen comprise several identical objects, the equivalent sound absorption area A_{obj} of an individual object is found by dividing A_{obj} , by the number of objects,n;

$$A_{obj} = \frac{A_T}{n} \tag{3}$$

III. Instrumentation

B&K 2270 Investigation Power amplifier B&K 2716 Omni directional speaker B&K 4292 Microphone B&K 4189 and accessories.

IV. Test Results:

Organization	Foshan TianGe Acoustic and Decor Material Co., Ltd.		
Test Specimen	Specimen 12mm Polyester Fiber Panel		
Specifications	cations Sample size:1200mm×600mm×12mm.		
Additional Description	12mm Polyester Fiber Panels were laid on a sub-frame with a 200mm airspace. This sound absorption structure (area:10.8 m²) was placed in the middle of the floor of the reverberation room and wrapped with 1mm steel panel.		

Description		floor of	floor of the reverberation room and wrapped with 1mm steel panel.			
Test Results						
Frequency (Hz)	A DSOTTION			(R)		
100	0.	.34				
125						
160						
200	0.	.75		.0		
250	0.	.85	ent a	0.9		
315	0.	.97	8 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.2 0.2			
400	0.	.92				
500	0.	.84				
630	0.	.68	0.3 Punu Vin			
800	0.	.66	So 0.2 250 - 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
1000	0.	.75				
1250	0.	.81		Frequency (Hz)		
1600	0.	.79		Frequency (nz)		
2000	0.	.81	Figure 1. Sound Absorption Coefficient against Frequency			
2500	0.	.84		E .		
3150	0.	79				
4000	0.	76				
5000	0.	73				

This report may not be reproduced except with prior written approval from the issuing laboratory.

V. Photographic Records:

